
HT103 - Vulnerability Detection and

Exploitation

You will learn how to apply the theory and practice of code auditing, how to dissect an

application, how to discover security vulnerabilities and assess the danger each vulnerability

presents. You will run vulnerability scans and observe exploits to better secure networks,

servers and workstations. This course is valuable for those involved in securing enterprise

systems: network and system administrators, computer security personnel, officers with direct

involvement in security and those involved in cyber security measures and implementation.

Course Agenda

DAY 01

1. Module Introduction

a. Overview of the day

2. Exploitation Techniques Fundamentals

a. A set of categories of software’s vulnerabilities

i. Memory Corruptions

1. Buffer Overflow

a. Stack buffer overflow

i. LAB - An example of stack buffer overflow

b. Off-by-one (stack/heap)

c. Modern memory protection mechanism (e.g., DEP and

ASLR)

ii. Format String Bugs

iii. Logical flaw

iv. Configuration flaw

3. Public Vulnerabilities & 0-Days

a. Vulnerability Definition

i. CIA Paradigm

ii. Definition of Vulnerability

iii. Definition of Exploit

b. Public and Private Vulnerabilities

i. Public Vulnerabilities

ii. CVE

iii. 0-day and 1-day Vulnerabilites

iv. Common methods for vulnerabilities identification

1. Fuzzing

2. Code review

3. Reversing

v. Malware analysis e patch analysis

1. 1-day vulnerabilities

c. Exploits

i. An exploit at work

1. techniques, payloads, injection and execution

ii. Exploit (technical) taxonomy

1. Local Exploit

2. Remote Exploit

3. Userland exploit

4. Kernel exploit

iii. Private

iv. Publics

1. Public exploit repositories

v. Exploit Markets

1. White market

a. iDefense and ZDI

b. Bug bounty programs

i. Google, Mozilla, Facebook, Microsoft

ii. Bugcrowd

c. Other initiatives

i. PWN2OWN

ii. Pwnium

2. Black market

3. Gray market

4. Fuzzing bugs - how to write a simple fuzzer

a. The history of fuzz testing

b. What “to fuzz” means

c. Even a dumb fuzzer can give you a crash

i. LAB - Example of dumb, random fuzzing of files

1. Charlie Miller’s 5 lines

d. How to create a fuzzer

i. Random fuzzing

ii. Specification based fuzzing (e.g. RFC-based fuzzing, (E)BNF fuzzing)

e. Let’s write a fuzzer

i. LAB - We use Metasploit

1. LAB - Introducing the framework and the modules structure

2. LAB - Write a simple fuzzer (FTP) - EIP = 41414141

ii. File format fuzzing with Minifuzz by Microsoft

1. LAB - File fuzzing with Microsoft Minifuzz

DAY 02

5. Recap of the previous day

6. Module introduction

a. Overview of the first day

7. OWASP Top 10 2013

a. Top 10 is a “concept” that can be extended to other contexts (e.g., mobile, cloud)

b. Security issues related to web application and technologies

i. Web application as a gateway to the corporate internal network

c. Risk definition and adopted methodology

i. Likelihood

ii. Impact

1. Technical

2. Business

d. For each item in the Top 10

i. The theory behind the vulnerability

ii. Attack scenario(s)

1. Focus on the impact of the related attack

iii. Live examples

1. LAB - Vulnerable code examples and exploitation (ASP.NET)

DAY 03

8. Recap of the previous day

9. Module introduction

a. Overview of the first day

10. Source code auditing

a. What source code auditing is?

i. Vertical and horizontal approaches

ii. Theory from OWASP Code Review guide

b. Manual vs automated review

i. Theory, limitations and common issues or pitfalls

ii. Manual and automated tools

11. Client-side vs Server-side attacks

a. Defining Server-side attacks

i. Examples and strategies

b. Defining client-side attacks

i. Examples and strategies

12. Mobile Vulnerabilities and Weakness

a. OWASP TOP 10 for Mobile 2014

i. For each item in the top 10

1. A theoretical introduction will be provided

13. Modify Exploit Code

a. Not always an exploit works out-of-the-box

i. A real world example

1. LAB - Jboss Invoker Deploy exploit provided by Metasploit

failed, even if it worked on a test vm with the same vulnerable

Jboss version installed.

2. Execution vs comprehension: understanding the vulnerability is

more important than run an exploit

a. LAB - Google for retrieve an exploit source code and

modify it a bit

b. LAB - Modify, run and hack the target machine

DAY 04

14. Recap of the previous day

15. Module introduction

a. Overview of the first day

16. Web Application Exploit Development

a. Why exploiting web applications

i. LAB - SQL Injection exploiting

ii. LAB - Cross-Site Scripting exploiting

b. Framework methods to develop a professional web exploit

i. LAB - CSRF exploiting

17. Reference and tools

